

Center-out Paradigm For a Continuous Two-Dimensional BCI Control

Dandan Huang, Ding-Yu Fei and Ou Bai (obai@vcu.edu) EEG&BCI Laboratory

Virginia Commonwealth University

OBJECTIVES

- ➤ Investigate the online performance of the BCI, using a 2D center-out car control paradigm
- Reliable decoding of human movement intention from EEG activities using two-step models, without intensive user training
- ➤ Towards the development of a reliable wheelchair control with decent speed

METHODS

 Design follows the rules: control should be natural & user friendly; avoid false triggering; no intensive user training.

- Idle: no motor task.
 RYes: imagine right h
- RYes: imagine right hand movement for 4s, then relax Rno: imagine right hand movement for 1.5s, then relax Lno: imagine left hand movement for 1.5s, then relax
- two-step models are built using calibration data, half of which are idle, half are evenly divided by RYes, Rno, and Lno.

CONTROL STRATEGY

Figure: Time sequence of the control strategy

Detection T1	Detection T2	Output Commands
Left ERD	Left ERS	Right Turn
Right ERD	Right ERS	Left Turn
Left (Right) ERD	Left (Right) ERD	Alternating
Left (Right) Idle	Left (Right) Idle	Keep status

EXPERIMENTAL PARADIGM

Movement should

pace with the color

cues or audio cues

Parameter settings:

- target size (6)/workspace size (100)=1.5/100
- car rotating speed=2*pi/27 (rad/s)
 car moving speed=0.4 (m/s)
- decision making cycle=1.5+2.5+2=6 (s)

RESULT

Car c	ontrol	Taken as				total	Acc
phy	sical	Idle RYes Rno Lno					
lo	lle	63	0	2	0	65	96.90%
	RYes	0	22	1	0	23	95.70%
Non- idle	Rno	1	0	10	0	11	90.90%
iule	Lno	0	0	0	8	8	100%

- □ 20 times hit rate 100%, total decoding Acc 96.3%
- ☐ average target hit time 32.1 second

Imaginary	Idle	RYes	Rno	Lno	Average
Decoding Acc	98.3	74.2	75.8	83.3	88.1

- ☐ offline average command decoding accuracy 88.1%
- ☐ 10 times hit rate 80%
- ☐ average target hit time 52 second

Trajectories of 16 runs for motor imagery

DISCUSSION

- * pre-set proper FP & TP rates to guarantee binary classification accuracy. Idle & RYes are frequently used, require high accuracy when building model for online.
- * when car rotation and forwarding speed both increase 20%, with decision making window shortened by 1 second, hit rate for physical test remains 100%
- * decision making window length and car speed can be further optimized, especially for imaginary test.