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Abstract

This study aims to explore whether human intentions to move or cease to move right and left
hands can be decoded from spatiotemporal features in non-invasive EEG in order to control a
discrete two-dimensional cursor movement for a potential multidimensional brain—computer
interface (BCI). Five naive subjects performed either sustaining or stopping a motor task with
time locking to a predefined time window by using motor execution with physical movement

or motor imagery. Spatial filtering, temporal filtering, feature selection and classification
methods were explored. The performance of the proposed BCI was evaluated by both offline
classification and online two-dimensional cursor control. Event-related desynchronization
(ERD) and post-movement event-related synchronization (ERS) were observed on the
contralateral hemisphere to the hand moved for both motor execution and motor imagery.
Feature analysis showed that EEG beta band activity in the contralateral hemisphere over the
motor cortex provided the best detection of either sustained or ceased movement of the right or
left hand. The offline classification of four motor tasks (sustain or cease to move right or left
hand) provided 10-fold cross-validation accuracy as high as 88% for motor execution and 73%
for motor imagery. The subjects participating in experiments with physical movement were
able to complete the online game with motor execution at an average accuracy of 85.5 +
4.65%; the subjects participating in motor imagery study also completed the game successfully.
The proposed BCI provides a new practical multidimensional method by noninvasive EEG
signal associated with human natural behavior, which does not need long-term training.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The brain—computer interface (BCI) provides a new means
of direct brain communication with the external environment
for patients who may partly or entirely lose voluntary muscle
contraction such as in the ‘locked-in’ state (Birbaumer et al
2008). One of the most useful applications for BCI is

4 Author to whom any correspondence should be addressed.
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to control an external device, e.g., wheelchair or robotic
arms, to restore motor function (Leeb et al 2007). This
purpose requires a BCI capable of multidimensional control.
Although multidimensional control is highly promising using
invasive methods, e.g. local field potentials/spike train
(Lebedev and Nicolelis 2006, Velliste et al 2008), or
semi-invasive methods using electrocorticography (ECoG)
(Schalk et al 2008), the noninvasive methods, in particular,
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electroencephalography (EEG), mainly support the one-
dimensional control (Krusienski et al 2007, McFarland and
Wolpaw 2003).  Successful two-dimensional BCI using
noninvasive EEG signals has been achieved (Wolpaw and
McFarland 2004). However, the subjects needed long-term
training, up to several months, before they could reliably attain
two-dimensional BCI control.

Recent studies have developed a scheme to achieve
two-dimensional control by sequentially combining two
binary controls (Bai et al 2007, 2008). Though sequential
combination of one-dimensional control may achieve two-
dimensional control, direct two-dimensional control, i.e., a
simultaneous control of four directions in a two-dimensional
plane, will be more effective, and thus, more convenient for
use.

Human somatotopic organization indicates that human
limbs are controlled by contralateral brain hemispheres. Many
neurophysiological and neuroimaging studies have confirmed
the nature of contralateral control (Bai et al 2005, Rao et al
1993, Stancak and Pfurtscheller 1996). Therefore, reliably
decoding the movement intention of right and left hands,
which are associated with different spatiotemporal patterns
of event-related desynchronization (ERD), i.e. oscillation
amplitude attenuation, and event-related synchronization
(ERS), i.e. oscillation amplitude increase, may provide
additional degrees-of-freedom for control. During physical
and motor imagery of right- and left-hand movements, beta
band brain activation (15-30 Hz) ERD occurs predominantly
over the contralateral left and right motor areas. The brain
activity associated with ceasing to move, the post-movement
ERS, can also be found over the contralateral motor areas. It
suggests that the brain activity associated with four natural
motor behaviors (thus, not requiring training) may potentially
provide four reliable features for a discrete two-dimensional
control, e.g. left-hand ERD to command to move left, left-hand
ERS to command move up, right-hand ERD to command to
move right and right-hand ERS to command move down. As
the spatial distribution of post-movement beta rebound (ERS)
is more focal than ERD distribution, the detection of ERS
might potentially be more reliable than the ERD detection
only (Pfurtscheller and Solis-Escalante 2009). As a result,
the proposed method to discriminate the spatial distribution
of ERD and ERS might provide more accurate classification
than previous methods relying on the detection of ERD only
(Neuper et al 2005, Naeem et al 2006). Although evidence
has demonstrated separate spatial patterns of ERD and ERS
with physical movement, it is also important to know about the
hemispheric patterns during motor imagery of limb movement
which is essential for achieving purely mental control without
involvement of muscle activity.

In summary, the aim of this study is to introduce a novel
BCI paradigm/method: decoding ERD and ERS associated
with natural motor behavior so that the subjects can control
cursor movement in a two-dimensional plane with minimal
training. We have tested whether the decoding of multiple
movement intentions is reliable enough to control a two-
dimensional computer cursor for a possible multidimensional
brain—computer interface (BCI). We also employed advanced

signal processing and classification methods for better
decoding of human intentions from single trial EEG to improve
the performance of the proposed BCI paradigm. The reliability
of two-dimensional cursor control has been tested on a virtual
online computer game.

2. Method

2.1. Subjects

Five healthy volunteers (three females and two males) between
the ages of 20 and 27 participated in this study. They were
right handed according to the Edinburgh inventory (Oldfield
1971). All subjects gave informed consent. Prior to this study,
none of these subjects had been exposed to a BCI system or
were informed of the experimental hypothesis. The protocol
was approved by the Institutional Review Board.

2.2. Experimental paradigm

The experimental paradigm in this study was similar to a
previous study (Bai er al 2008). All subjects participated in
the first session of the study, i.e. motor execution with physical
movement. Two subjects (S1 and S2) were also available to
further participate in the second session, i.e. motor imagery.
During recording, a quiet environment with dim light
was provided to maintain the subjects’ attention level. The
subjects were seated in a chair with the forearms semi-flexed
and supported by a pillow. They were asked to keep all
muscles relaxed, except for those in the performing arms;
besides, they were also instructed to avoid eye movements,
blinks, body adjustments, swallowing or other movements
during the visual cue onset. During motor imagery, the
investigator monitored the EMG activity continuously; once
EMG activity was observed, the subjects were reminded to
relax the muscles. Trials with EMG contamination were
excluded based on visual inspection for further offline ERD
and ERS feature analysis and classification. Visual inspection
was done by inspecting continuous EEG data. For EEG
recordings associated with physical movement, trials with
EMG activities presented in both right and left hands, i.e.,
bilateral movements, were excluded. For EEG data with motor
imagery, trials with EMG activities spreading in EEG channels
due to facial muscle contraction were excluded. Each of the
motor execution with physical movement and motor imagery
sessions contained an initial calibration step to determine the
optimal frequency band and spatial channels. The selected
features and generated model were then used to test an online
two-dimensional-cursor-control game. The two sessions were
performed continuously within 3—4 h in a single visit.

2.2.1. Calibration.  Visual stimuli were periodically
presented on a computer screen, placed in front of the subjects,
with the distance and the height adjusted for the subject’s
comfort. In the first session (pure physical movement), there
were four cues in the task paradigm, ‘RYes’, ‘RNo’, ‘LYes’
and ‘LNo’ (‘R’ indicates the right-hand task, and ‘L’ for the
left-hand task). The visual cue was displayed for a period
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Figure 1. Calibration paradigm. In the case of ‘RYes’, the subjects
were instructed to start motor execution or motor imagery using
right hand when the first cue presented (green color) at the beginning
of the T1 window; when the color of cue turned to blue at the
beginning of the T2 window, the subjects were instructed to sustain
motor execution or motor imagery (ERD by a small blue circle was
expected on the left hemisphere, see detail in the text). In the case of
‘RNo’, the subjects were instructed to start motor execution or motor
imagery using right hand when the first cue presented (green color)
at the beginning of the T1 window; when the color of cue turned to
blue at the beginning of the T2 window, the subjects were instructed
to stop motor execution or motor imagery (ERS by small red circle
was expected on the left hemisphere). Procedures were similar for
‘LYes’ and ‘LNo’ with left-hand motor execution or motor imagery.

of T1 in green color, followed by a color change of the cue
to blue, which is illustrated in figure 1. The second cue was
displayed for a period of T2, after which the cue disappeared.
The lengths of the T1 and T2 windows were set to 2.5 s
initially. The time interval between the end of T2 and the next
T1, i.e. trial-to-trial interval, was set to 2 s. The subjects were
instructed to begin repetitive wrist extensions of the right arm
at the onset of the initial cue ‘RYes’ or ‘RNo’. At the time of
color change, the subject was instructed to continue movement
with the ‘Yes’ cue or abruptly relax and stop moving with the
‘No’ cue. The task was similar for ‘LYes’ and ‘LNo’, where
the subjects performed using the left hand instead.

In the calibration step for motor imagery, the subjects were
asked to perform both physical movement and motor imagery
according to eight cues: ‘PHYRYes’, ‘PHYRNo’, ‘PHYLYes’,
‘PHYLNo’ (for physical movement) and ‘MIRYes’, ‘MIRNo’,
‘MILYes’, ‘MILNo’ (for motor imagery). The alternation
of physical movement and motor imagery was intended to
provide the subject with a vivid mental sensation of physical

movement for better motor imagery. The visual cues were
randomly presented, and the subject performed either physical
movement or motor imagery, using either right or left hand,
following the instruction of the ongoing cue. The lengths of
T1 and T2 were adjusted according to the different response
delays for each subject, and kept consistent in the following
sessions/steps.

The calibration procedure for the physical movement
session consisted of three or four blocks of trials, each
block consisting of 48 trials, 24 ‘Yes’ or ‘No’ stimuli with
a total duration of 6-7 min. The ‘Yes’ and ‘No’ stimuli
were provided pseudo-randomly. The calibration for the
motor imagery session consisted of two to four blocks of
trials, each block consisting of 96 trials, with ‘PHY’ and
‘MI’ appearing pseudo-randomly for alternating physical
movement and motor imagery, and 48 ‘Yes’ and 48 ‘No’
stimuli with a total duration of 12—13 min.

2.2.2. Discrete  two-dimensional-cursor-control game.
Sustained physical movement is usually associated with
a persistent event-related desynchronization (ERD), while
cessation of movement is followed by a beta band rebound
above baseline power levels, i.e. event-related synchronization
(ERS). Since we intended to discriminate ERD from ERS,
which occurs only after cessation of movement in the T2
window, we only extracted EEG signal in the T2 time window
to classify ‘Yes’ or ‘No’ intention determined from ERD and
ERS. Successfully classifying the four kinds of movements
in motor execution or motor imagery was the basis of the
realization of 2D control.

In a 2D plane, the cursor can be moved in four directions:
up, down, right and left, each of which was linked to one of the
four movements. We intended to decode movement intentions
to determine the subject’s control of the cursor direction. As
human movement intention is associated with spatial ERD
and ERS (on either left or right hemisphere), we applied
the detection strategy as shown in figure 2. For example,
if the subject wanted to move the cursor to right, he needed
to perform the ‘RYes’ task, either physical or motor imagery
to develop an ERD pattern on the left hemisphere. When the
associated ERD on the left hemisphere was detected in the T2
time window, the cursor would move in the right direction;
similarly, if the subject wanted to move the cursor upward, he
needed to perform the ‘LNo’ task, and when the associated
ERS on the right hemisphere was detected in the T2 window,
the cursor would move upward accordingly.

Upon successfully decoding movement intentions in the
offline analysis, the subjects played a game of two-dimensional
control of cursor movement on a computer monitor. A brief
description of the 2D cursor-control game is given here since
the detailed design of the online game was similar to the one
given for binary cursor-control game (Bai et al 2008). The
subjects were instructed to move the cursor to the target and
avoid a designated ‘trap’. The cues were presented in the
same duration as that in the calibration session. Classification
of ‘Yes’ and ‘No’ trials of right and left hands was used to direct
2D control correlated with cursor movement. As illustrated in
figure 2, the detection of ‘LYes’ will direct the cursor move
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Figure 2. Scheme of 2D cursor control. Four directions control by
spatial detection of ERD/ERS on the right/left hemisphere
associated with intention to move or cease to move left/right hand.
In order to control the cursor moving to left (‘LYes’ direction), the
subjects may perform sustained physical movement/motor imagery
so that ERD on the right hemisphere can be detected. Other
direction controls are similar.

to the left, and similar with the other directions. The initial
positions of cursor, target and trap were provided pseudo-
randomly and the number of detections was different in each
game. The subjects played 4—-6 games and they were allowed
5-10 min to practice the game before the test.

In the online 2D game, the subjects determined the path
to reach the target using their own game strategy. From the
example shown in figure 3(a), the subject may choose to move
to the right instead of downward in that situation. It was
also possible that the subject would choose to move up to the
margin of the grid and then move along the margin to the target.
Due to various strategies, it was difficult to determine the
cursor-control accuracy from the path of the cursor movement.
Instead, in the case of physical movement, we used the
EMG activity in the detection window to interpret whether
the subjects desired to move to one of the four directions,
and as a result, the control accuracy could quantitatively
be determined from the actual cursor movement from the
EEG derived results. In the case of motor imagery for
online game, the subjects determined the direction to move;
as there was no EMG activity of motor imagery, we were

unable to know whether each movement was correctly decoded
as the subject intended. Therefore, instead of quantitative
measurement of control accuracy, we qualitatively evaluated
the success of the two-dimensional cursor control with motor
imagery by whether the subjects could control the cursor to
reach the target. However, if the cursor was moved into
the trap or the total number of moves reached the limit
of five times the shortest possible moves, the game would
automatically stop. We considered the successful judgment
of the two-dimensional cursor control with motor imagery to
be a qualitative measurement. The quantitative measurements
of control accuracy for motor imagery were determined from
the visually cued motor imagery of wrist extension, i.e. in the
calibration procedure.

The main purpose for the proposed computer game was
to improve the subjects’ motivation in participating in the
investigation. The subjects played the game with physical
movements first. When the subjects were comfortable with the
game, whether the subjects could play the game with motor
imagery was determined.

2.2.3. Mental strategy for motor imagery. In the motor
imagery part, the subjects were asked to imagine repetitive
wrist extension of their own hands. As motor imagery is not a
routine natural behavior in daily life, usually mental training
with feedback is required before the subjects can perform a
vivid imagination of the movement (Neuper ef al 2009). In
this study, there was no feedback in the calibration procedure
for motor imagery and the modeling under the calibration data
may be unreliable if the subjects were unable to imagine the
physical movements. In order to achieve better calibration
as well as modeling, the subjects performed both physical
movement and motor imagery in the calibration step in the
motor imagery session. Our assumption was that the subjects
would be able to imagine more vividly right after a physical
movement. However, only the data associated with motor
imagery were used for offline calibration and modeling for the
subsequent motor imagery study. In the motor imagery task,
the subjects reported difficulty in imagining the termination
of movement. We guided them to stop imagining movement
by switching from the imagination of the motor task to a non-
motor task such as reciting the alphabet or counting numbers
mentally.

(a) (b)

Figure 3. Paradigm of a discrete two-dimensional cursor-control game. (a) A game grid is displayed for 2-3 s showing a cursor (blue),
target (red) and trap (black). (b) All squares except those adjacent to the cursor are masked and green prompts are displayed in the adjacent
squares. (c) After a T1 delay, these prompts turn blue and remain for a period of T2. (d) The subject’s response uniquely determines the
cursor movement direction, which the cursor slides to. The entire process (a)—(d) then repeats for the next cursor move, and so on until the

target is obtained, the trap is hit or too many moves have been made.
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2.3. Data acquisition and online data processing system

EEG was recorded from 27 (tin) surface electrodes (F3, F7,
C3 A, Cl1, C3, C5, T3, C3P, P3, TS5, F4, F8, C4 A, C2,
C4, C6, T4, C4P, P4, T6, FPZ, FZ, FCZ, CZ, CZP, PZ and
0Z) attached on an elastic cap (Electro-Cap International,
Inc., Eaton, OH, USA) according to the international 10-20
system (Jasper and Andrews 1938), with reference from the
right ear lobe and ground from the forehead. For surface
electromyography (EMG), which was used to monitor the
movement, two electrodes were filled with conductive gel and
taped over the right and left wrist extensors. Electrodes for
bipolar electrooculogram (EOG) above left eye and below right
eye were also pasted.

Total duration of preparation included time to obtain
informed consent, paradigm explanation, setting up the
electrodes and preparations of hardware and software. This
procedure took about 30 min to 1 h. Signals from all the
channels were amplified (g.tec GmgH, Schiedlberg, Austria),
filtered (0.1-100 Hz) and digitized (the sampling frequency
was 250 Hz).

The digital signal was then sent to a HP PC workstation
and was online processed using a home-made MATLAB
(MathWorks, Natick, MA) Toolbox: brain—computer interface
to virtual reality or BCI2VR (Bai et al 2008, 2007). The
BCI2VR programs provided both the visual stimulus for the
calibration and the two-dimensional cursor-control game, as
well as the online processing of the EEG signal. The signal
for decoding was extracted following the cues from the visual
stimulus.

2.4. Computational methods for decoding movement
intention

Recent BCI studies reported that BCI performance in terms
of both accuracy and efficiency can be further improved by
applying advanced filters and more computationally intensive
nonlinear classification methods (Muller-Gerking et al 1999,
Naeem et al 2006). We have first employed simple linear
methods, and then more intensive computational methods have
been explored to determine whether and how the classification
performance could be further improved.

The online signal processing to decode movement
intention consists of three steps: (1) spatial filtering, (2)
temporal filtering and (3) feature extraction and classification.

Spatial filtering. Surface Laplacian derivation (SLD) was
applied. EEG signal from each electrode was referenced
to the averaged potentials from the nearby four orthogonal
electrodes (Hjorth 1975). SLD operation improves the
localization of sources, by reducing the smearing effect in
conducting layers of the head, and also reducing the common
reference effect (Nunez et al 1997). Besides, the EEG feature
of local synchrony, i.e., frequency power changes, can be
enhanced as well (Pfurtscheller 1988). As a result, the spatial
difference due to different hand movements might be more
distinguishable.

Temporal filtering. The power spectral density was estimated
from the spatially filtered EEG signal from the T2 window

and according to the visual inspection of time—frequency plot
of ERD and ERS (refer to Results session and figures 4 and
5), the time period 1 s-2 s after the T2 window started was
extracted in order to obtain the strongest ERD/ERS. Because
the signal was no longer stationary or associated with certain
motor task outside a short-lasting data window, the data length
for estimation was limited so that the natural power estimation
of ERD and ERS under the periodogram method was not
a consistent estimation with a variance as large as the true
spectrum. The Welch method was applied with a Hamming
window to reduce estimation variance and side-lobe effect
(Welch 1967): the data in the selected time window were
segmented and periodograms from all segments were averaged
to obtain smoothed estimation. The length of the segment
determining frequency resolution was compromised with the
number of segments determining the estimation variance so
that the segment length or the frequency bin width needed
to be optimized. The optimization was performed using the
cross-validation method with a MLD classifier. We found
4 Hz frequency resolution or a segment length of 256/4 =
64 under 50% overlapping, provided a better classification of
ERD and ERS across subjects, which was consistent with what
we used for the binary control of 2D cursor movement (Bai
et al 2007).

Feature extraction and classification. For either physical
movement or motor imagery, there were about 96 trials making
the data pool of 96 samples with 16 samples for each of the four
classes. The offline performance of multi-class classification
was evaluated from 10-fold cross-validation; 90% of the data
pool was used for training, and the other 10% was used for
validation so that the validation data set was independent of
the training dataset. For classification methods using hyper-
parameters or feature evaluation for feature selection, these
parameters or features were also determined by the training
data set only. In the online game, the features for decoding
the movement intention were extracted and classified using the
parameters determined from the calibration data set.

2.4.1. Feature extraction

Empirical feature reduction.  Assuming that movement
intention associated cortical activities occur over the motor
cortex, we reduced the channel number from 29 to 14, which
covered both left and right motor areas. Furthermore, as we
did not expect relevant activities in the delta, theta and gamma
bands, only alpha and beta band (8-30 Hz) activities were
extracted for modeling and classification. Thus, the total
number of extracted features was 8 (frequency bins) x 14
(channels) = 112 features.

Bhattacharyya distance. Bhattacharyya distance provides an
index of feature separability for binary classification, which
is proportional to the inter-class mean difference divided by
intra-class variance (Chatterjee et al 2007). The empirically
extracted features were ranked by the Bhattacharyya distance
for further classification.

Genetic algorithm. Genetic algorithm (GA)-based feature
selection is a stochastic search in the feature space guided
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by the concept of inheriting, where at each search step,
good properties of the parent subsets found in the previous
steps are inherited. 10-fold cross-validation was used with
a Mahalanobis linear distance (MLD) classifier for feature
evaluation (Li and Doi 2006). In this approach, the population
size we used was 20, the number of generations was 100, the
crossover probability was 0.8, the mutation probability was
0.01 and the stall generation was 20.

2.4.2. Classification methods

Mahalanobis linear distance classifier. Classification was
done upon measuring the Mahalanobis linear distance,
which computed a pooled covariance matrix averaged from
individual covariance matrices in all task conditions where the
discriminant boundaries were hyper-planes leaning along the
regressions (Marques 2001). All 112 features after empirical
feature reduction were used for calculating the distance in
high-dimensional space.

GA-based Mahalanobis linear distance classifier. The sub-
optimal feature subset was selected by GA, and the selected
features providing the best cross-validation accuracy were
applied to a Mahalanobis linear distance classifier. The
number of features for the subset was 4, which was determined
from the cross-validation accuracy with feature numbers of 2,
4, 6, 8 and 10 from the calibration data set of S1.

Decision tree classifier. Since a certain feature subset,
for example, channels over the left motor cortex, may be
sensitive to discriminate the intention to move the right hand
and not sensitive for detecting other movement intentions,
a decision tree method (DTC) was employed for the multi-
class classification task in this study. At each level of DTC,
the features for one-to-others classification were ranked by
the Bhattacharyya distance, and the four features with higher
ranks were used for classification by MLD. The number of
features for classification was determined from preliminary
comparison with numbers of 2, 4, 6, 8 and 10.

Support vector machine classifier. Support vector machine
(SVM) tackles the principle of structure risk minimization with
the consideration of maximization of the margin of separation
(Vapnik 1998). As a consequence, SVM can provide a
good generalization performance independent of the sample
distribution. As a promising method, SVM has been suggested
in a number of BCI applications (Olson et al 2005, Thulasidas
et al 2006). We employed a SVM approach provided in
LIBSVM (Fan et al 2005). The radial basis function was
used as the SVM kernel function as it can provide a similar
classification outcome compared with other kernels (Keerthi
and Lin 2003). As the performance of SVM depends on the
regulation parameters or hyper-parameters C and the width of
the kernel o (Muller et al 2001, Chang and Lin 2001), 10-fold
cross-validation was performed; 2K K from -5 to 15 with a
step of 2 for the penalty parameter and 2%, K from —15 to 5
with a step of 2 for the spread parameter. These parameters
were determined by the training data set only.

2.5. Data processing for neurophysiological analysis

Offline data analysis was performed to investigate the
neurophysiology following the tasks of ‘Yes” and ‘No’ using
the right or left hands. The calibration datasets were used for
analysis. Data processing was performed using the MATLAB
Toolbox of BCI2VR. Epoching was done with windows of
—2 s—7 s with respect to the first cue onset. Any epochs
contaminated with artifacts were rejected. ERD and ERS were
calculated for each case. Epochs were linearly de-trended and
divided into 0.256 s segments. The power spectrum of each
segment was calculated using FFT with Hamming window
resulting in a bandwidth of about 4 Hz. ERD and ERS were
obtained by averaging the log power spectrum across epochs
and baseline corrected with respect to —2 s—0's.

3. Results

3.1. Neurophysiological analysis of ERD/ERS

The proposed BCI in this study intended to differentiate ERD
and ERS patterns in two hemispheres following right-hand
and left-hand movement or motor imagery. In the calibration
session, for either hand, subjects performed motor execution
or motor imagery during both T1 and T2 windows for the
‘Yes’ case, whereas they performed the same tasks during
the T1 window and stopped to relax during T2 window for the
‘No’ case. The motor task was the same in the T1 window for
both ‘Yes’ case and ‘No’ cases. The spatiotemporal analysis
following the ‘No’ cue onset was performed for either hand
using the calibration dataset for both motor execution and
motor imagery.

Figure 4 shows examples of time—frequency plots, head
topographies of ERDs or ERSs for motor execution with
physical movement, from subjects 1, 2, 3 and 4, respectively.
For each subject, time—frequency plots of channel C3 over
the left sensorimotor cortex and C4 over the right hemisphere
are illustrated in the left two columns and head topography
of ERD or ERS to their right, containing each of the four
situations: ‘RYes’, ‘RNo’, ‘LYes’ and ‘LNo’. In the time—
frequency plot, O s stands for the first cue (green in the visual
paradigm) occurrence. ERD (blue color) was observed from
around 0.5-1 s after the cue onset due to the response delay;
for S1, S2 and S3, ERD in both alpha and beta bands from
10-30 Hz was observed over motor areas contralateral to the
hand moved. The ERS in red color was mainly observed in
the beta band centered around 20 Hz over the contralateral
motor areas. Compared with ERD patterns, ERS was short-
lasting in time but highly distinguishable. The ERD and ERS
topography shows beta band activity: 21-24 Hz for S1 and
S2 and 17-20 Hz for S3. Therefore, the ERD and ERS on
either left or right hemisphere provided four spatial patterns to
detect ‘RYes’, ‘RNo’, ‘LYes’ and ‘LNo’ intentions. However,
ERD and ERS were less distinguishable for S4 (21-24 Hz for
topography).

Figure 5 shows the time—frequency plots and head
topography of ERD and ERS associated with motor imagery.
Similar to the patterns associated with physical movement,
ERD associated with motor imagery was observed in both
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Figure 4. Time-course and topography of ERD and ERS during motor execution following the calibration paradigm for S1, S2, S3 and S4.
Blue color stands for power decrease or ERD; red stands for power increase or ERS. The T1 window is from O s to 2.5 s and the T2 window
is from 2.5 s to 5 s. For S1, S2 and S3, ERD was observed in the T2 window on the left hemisphere during sustained right-hand movement;
ERS was observed in the T2 window on the left hemisphere when the subjects ceased to move right-hand movement. During left-hand
movement, ERD was observed in the T2 window on the right hemisphere during sustained movement and ERS on the right hemisphere
when the subjects ceased to move left hand. ERD and ERS in each case were marked by pink circles in the time—course plot. The head
topography corresponding to the pink marked time period was provided next to the time—course plots.

alpha and beta bands on the contralateral hemisphere with the
hand moved, although ERD amplitude was smaller than that
of physical movement. ERS in the T2 window was observed
on the contralateral hemisphere in beta band (13-24 Hz) only,
and its amplitude was smaller than that of physical movement.
During left hand motor imagery for S1 (‘LYes’), ERD in the T2
time window was also observed on the left hemisphere. The
ERD and ERS associated with motor imagery also provided
four spatially differentiable patterns; however, the smaller
amplitudes of ERD and ERS with motor imagery may result
in less effective detection in single trials.

3.2. Feature analysis

The best frequency bands and channels for classifying
movement intentions were determined from the calibration
data sets. Figure 6 shows the spatial-frequency feature analysis
indexed by the Bhattacharyya distance for S1, S2, S3 and
S4 during motor execution with physical movement, where
all the channels over the whole head were used. The first
column for each subject illustrates the channel-frequency
plot of the Bhattacharyya distance, and the second column
is the topography of the Bhattacharyya distance of the best
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Figure 5. Time-course and topography of ERD and ERS during motor imagery following the calibration paradigm for S1 and S2. For both
S1 and S2, ERD is obtained in the time window with sustained motor imagery and ERS with termination of motor imagery. ERDs appear in
both alpha and beta bands, bilateral, whereas ERSs appear only in the alpha band on the contralateral hemisphere. ERD and ERS in each
case were marked by pink circles in the time—course plot. The head topography corresponding to the pink marked time period is provided

next to the time-course plots.
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Figure 6. Feature visualization indexed by the Bhattacharyya distance for S1, S2, S3 and S4 during motor execution following the
calibration paradigm. The best frequency band with the highest separability was found in the beta band, and the best channel was found in

sensorimotor areas.

frequency band. In the Bhattacharyya distance plot, the dark
red color shows the higher Bhattacharyya distance standing
higher separability to classify movement intentions from single
trial EEG signal.

In the channel-frequency plot for S1, the higher
Bhattacharyya distance value for right-hand physical
movement was observed in beta band ranging from 17 to
24 Hz in the channels located on the left hemisphere over the
sensorimotor area. The high separability between ERD and
ERS in the beta band was consistent with the time—frequency
analysis in figure 4. The topography of the Bhattacharyya
distance around 17-24 Hz shows that the best EEG spatial
channels for the classification of ‘RYes’ and ‘RNo’ were in

the contralateral left hemisphere over the sensorimotor area
since ERS presented on contralateral left hemisphere only,
although ERD occurred bilaterally as shown in figure 4. A
higher Bhattacharyya distance value for left-hand physical
movement was also seen in the beta band on the contralateral
right hemisphere. For S2, the distribution of Bhattacharyya
distance values was similar to that of S1, except that for either
right hand or left hand, the ‘Yes’ case showed high separability
only on the contralateral hemisphere, which can be seen in the
topography of the Bhattacharyya distance. For S3, the best
frequency band with the highest Bhattacharyya distance value
was in the beta band around 13-24 Hz. The higher separability
of the beta band activity was consistent with the ERD and ERS
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Figure 7. Feature visualization indexed by the Bhattacharyya
distance for S1 and S2 during motor imagery following the
calibration paradigm. The best frequency band with the highest
separability was found in the beta band, and the best channel was
found in sensorimotor areas.

features shown in figure 4, where both ERD and ERS were seen
only in the beta band. For S4 with physical movement, the
values of the Bhattacharyya distance were much smaller than
other subjects, although the spatial pattern was similar. The
lower Bhattacharyya distance indicates that the classification
would be very difficult from single-trial signals.

Figure 7 shows feature analysis for S1 and S2 with
motor imagery. For S1 and S2, the distribution of higher
Bhattacharyya distance values was similar to that with physical
movement, but the separability was lower. The highest
Bhattacharyya distance values were in the beta band and on
the channels over contralateral hemisphere for both right- and
left-hand motor imagery.

3.3. Classification

The comparison of 10-fold cross-validation accuracies using
MLD, GA-MLD, DTC and SVM methods for S1, S2, S3 and
S5 during physical movement is shown in table 1. Since ERD
and ERS patterns were not strong enough for S4, we excluded it
from further exploration of classification methods. MLD has
a mean value of 70.2%; after applying genetic algorithm in
feature selection, GA-MLD provides an improved mean value
of 88.3%. Using a paired #-test, GA-MLD is found to have
a significant improvement of the classification accuracy over
the MLD (¢ = 7.64, df = 3, p-value < 0.01%). Similarly, we
also compared DTC and SVM performance with that of MLD.
Paired r-test gives the result showing that DTC outperforms
MLD significantly (r = 4.20, df = 3, p-value < 0.03*) and
SVM improved significantly better than MLD as well (t =
5.56, df = 3, p-value < 0.02%).

Although the intensive methods GA-MLD (mean 88.3%),
DTC (mean 86.4%) and SVM (mean 88.1%) all performed
significantly, better than MLD (mean 70.2%), there was no
significant difference among these three methods through one-
way analysis of variance (ANOVA), F(1,2) = 5.7, p-value <
0.39, alpha = 0.05.

Since there was no significant difference among the
intensive methods, the DTC method was employed for the
online 2D cursor control game. Except for S4, all the other four
subjects were successful in controlling the cursor moving to
the target by physical movement and the average online game
performances for S1, S2, S3 and S5 were 92%, 85%, 81% and
84%, with the overall performance of 85.5% + 4.65%.

S1 and S2 participated in the second session performing
motor imagery tasks. The offline classification accuracy for
S1 was 73% + 5.97%, and for S2 was 59.2% =+ 3.63%,
which were lower than those of cursor control with physical
movement. The two subjects reported good concentration
throughout the recording, except that S2 felt sleepy in a short
period in the middle. Online 2D cursor control game using
motor imagery was performed by S1 and S2. S1 was able
to move the cursor to the target. However, S2 performed
less well than S1. The performance was consistent with the
classification results for motor imagery.

4. Discussion

4.1. Spatial detection of ERD and ERS

We observed contralateral ERD and ERS in the beta band
during sustained movements and post-movement from all
subjects when they performed physical movements; ERD over
the motor area on left hemisphere associated with sustained
right-hand extension; post-movement ERS or beta band
rebound occurring when stopping movement; ERD on right
hemisphere associated with sustained left-hand extension and
ERS with cessation of the movement. ERD and ERS patterns
on left and right hemispheres were highly differentiable for
subjects S1, S2, S3 and S5, whereas they were less detectable
for S4. For motor imagery, S1 and S2 showed similar
ERD/ERS patterns as those with physical movement. The
amplitudes of ERD/ERS, however, were smaller. Although
the ERD/ERS patterns were expected to be similar between
physical movement and motor imagery, we considered that the
effectiveness of motor imagery, i.e. how to vividly imagine
limb movement, might highly affect cortical ERD/ERS
patterns.

The reason for the fact that motor imagery has less robust
performance than physical movement might be that motor
imagery is not a natural behavior and thus requires more
effort than performing physical movement. Besides, compared
with physical movement, there is no neural feedback in motor
imagery which may exhibit less activity (ERS) in the motor
cortex and result in a lower signal to noise ratio. Considering
that motor imagery is more meaningful for BCI application,
training may be needed to enhance the involvement of subjects
with motor imagery.

4.2. Decoding rate and accuracy

The BCI performance can be evaluated from both the decoding
rate and accuracy (Wolpaw et al 2002). Wolpaw et al
introduced the information transfer rate (ITR) for a BCI as bits
per minute (bpm) as a good measurement for both decoding
rate and accuracy (Wolpaw et al 2000). In our study of 2D
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Table 1. 10-fold cross-validation accuracy.

Subject  MLD (%) GA-MLD (%) DTC (%) SVM (%)

S1 63.1 =451 87.7+1.29 87.8 147 87.8+1.31
S2 79.5+£6.21 93.0+1.97 85.5+£3.87 90.0+£3.12
S3 67.3+3.04 852+0.95 84.5+£230 889+1.04
S5 71.0+£2.18 87.2+0.58 87.7+£1.75 858+£2.13
Average 702 +697 8831333 86.4 £ 1.64 88.1+£1.79

MLD, Mahalanobis linear discrimination; GA-MLD, genetic
algorithm-based Mahalanobis linear discrimination; DTC, decision tree
classifier; SVM, support vector machine classifier.

control, accuracies for physical movement ranged from 85.2%
t0 93.0% (given by GA-MLD, although not significantly better
than DTC and SVM), with the average of 88.3%; for a four-
class mental task, ITR was from 1.16 bits per trial, to 1.37
bits per trial, with the average 1.29 bits per trial. For motor
execution with physical movement, the total duration of T1
and T2 windows was 5 s, i.e. 12 trials per minute. Therefore,
the ITR was 13.9-16.5; the average was 15.5 bits per minute.
Similarly, for motor imagery, the ITR was 4.15 bits per minute
to 8.03 bits per minute. The cueing period T1 is important as it
left enough time for the subjects to prepare for the movement.
The results were comparable in terms of both accuracy and
decoding rate with previous studies (see review in Wolpaw
et al (2002)). We consider that the T1 window can be further
shortened or optimized when the subjects can make rapid
response, and as a result, the ITR can be further improved. We
also consider that the control performance/accuracy is very
important in practical BCI application. As BCI is intended
for patients having limited motor function which features
extremely slowness in motor control, it may be appropriate
to have limited communication speed, whereas the accuracy
needs to be high enough so that the users may avoid frustration
when using BCL.

Invasive methods using spike train or local field potentials
(Donoghue 2002, Carmena et al 2003), or at least semi-
invasive method using ECoG (Schalk et al 2008), have been
investigated as the major signal methods for two-dimensional
(or three-dimensional) BCI control. The noninvasive signal
method, though more convenient for practical application, has
been less studied. This study provides further evidence for
two-dimensional BCI control using the noninvasive method.
From spatial detection of ERD and ERS, two-dimensional
control was reliable with a detection accuracy of 80-90%.

Previous 2D control was achieved by accurate control of
EEG frequency power so that long-term training was required
before the subject was able to regulate EEG rhythm precisely.
In the proposed BCI methods, BCI cursor control was achieved
by the ERD and ERS associated with natural motor behavior
so that long-term training was no longer required.

4.3. Difficulty and improvement

Unlike in binary motor imagery (Bai et al 2008) where the
subjects imagine the movement of only one limb of the
body, motor imagery in 2D motor control tasks can be more
difficult, since the subjects need to respond quickly to each
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imagery task and switch reactions successfully among the
four tasks. Fatigue is a common issue during data collection
which requires a relatively long time and repetitive motor
tasks. To maximize subject involvement so that they are highly
motivated, the paradigm can be further improved in terms of a
better design and a shorter calibration time, which will greatly
benefit BCI application. Also, the subjects can be trained more
as to how to avoid fatigue in the experiments. These issues
will be considered and addressed in the subsequent studies.

4.4. Possible contamination of muscle artifact

EMG contamination from facial muscles may possibly cause
serious problems in BCI development (McFarland et al 2005).
Throughout the experiment, EMG signal was monitored for
all subjects, to make sure correct movements were performed
and no EMG occurred during motor imagery. Further, the
signal for classification was extracted from around 3.5 s—4.5s
with respect to the first color cue onset (i.e., 1 s—2 s after T2
started) so that the artifact contaminated signal outside this
period was not included; feature analysis showed that beta
activities restricted to motor areas were used for classification.
Therefore, the EMG contamination was not a concern in this
study.

4.5. Classification method analysis

Mahalanobis linear distance uses a large number of features
for classification. In multi-class classification tasks, a very
large data set is used for proper training, and further, a
feature subset may perform well for some classes but poorly
for others. ‘DTC’ has been employed for overcoming these
difficulties, to use multi-level classification under the ‘divide
and conquer’ principle. Support vector machine (SVM)
approach also provides good control of model complexity to
avoid over-fitting, but due to the requirement for determining
hyper-parameters, the training time in offline modeling might
be longer. Furthermore, determining hyper-parameters may
need a larger sample set. Taking into account all these
considerations, ‘DTC’ would be preferable for online 2D
cursor control, since it has good performance and is simple
and fast.

4.6. Implications of proposed BCI

BCI has been proposed for patients who may lose voluntary
muscle contraction. In the extreme state such as in patients
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with amyotrophic lateral sclerosis (ALS), individuals may
be entirely ‘locked-in’ though their cognition is still intact.
Under these conditions, BCI is then only possible with motor
imagery. The two-dimensional BCI control in this study
shows that reliability or accuracy was less with motor imagery
than with physical movement. However, only two subjects
have been studied with motor imagery so that further study
with more subjects should be addressed. For patients who
are not in a ‘locked-in’ state but cannot produce reliable
muscle contraction due to muscle weakness or spasticity,
we would expect more reliable two-dimensional control with
their limited motor output as this study demonstrates a highly
reliable control with simple physical movement.

In this study, the set-up time for electrodes over the whole
scalp was around 15-20 min. As this is an exploration study,
we applied electrodes over the whole scalp. From the feature
analysis in figure 6, we found the electrodes over the motor
cortex provided better features for classification. Therefore,
the number of electrodes for future practical application can be
further reduced and the electrode setup time might be reduced
to within 10 min.

In summary, ERD/ERS using our 2D natural paradigm
present four distinguishable patterns as we expected, both in
physical movement and imagery. Although variability might
lead to considerable challenges in the classification process,
the intensive methods we applied exhibit satisfying properties
and robust results, making 2D control more reliable. It is
worthwhile pursuing this potential system since EEG is less
expensive, flexible, and has established analysis techniques.
If the design and signal processing methods can be further
improved, BCI products will eventually offer those who
have totally lost muscle control convenient, fast and reliable
control of mechanical devices. This will largely reduce
the reliance on continuous support from others, and thus
enhance their quality of life.
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