

An EEG-Based Natural BCI for Volitional 2-D Cursor Control

Dandan Huang, Peter Lin, Ding-Yu Fei,

Xuedong Chen, Ou Bai

EEG & BCI Laboratory

Critical challenge for BCI?

• BCI Purpose: direct brain control.

BCI & Volition

- Brain signal:
 - Reliably decode subject's volition: high Signal-to-Noise Ratio (SNR) is required

Signal Methods

Invasive BCI

- Pros
 - Better SNR
- Cons
 - Clinical threshold
 - Technical difficulties

Non-invasive BCI

- Pros
 - Easy to use
- Cons
 - Low signal-to-noise ratio:

large variance

Rhythm Regulation

To increase SNR (reduce variance): EEG rhythm regulation (Wolpaw and McFarland, 2004)

However, the artificial regulation requires:

- Long-term training
- Much attention & mental effort: fatigue
 - may no longer be able to regulate

Paralyzed patients

- may not be able to learn
- easily get fatigued (Birbaumer, 2006)

Our solution

Natural BCI associated with movement intention

- No need to learn
- Less mental effort

Human movement intention with natural behavior

- ERD (Event-Related Desynchronization): power decrease, during movement (widely used in BCI).
- ERS (Event-Related Synchronization): power increase, post-movement (novel augmentative feature).
- ERD/ERS: motor imagery (available).

Identify ERD from IDLE Large variance

Dr. Wolpaw's group
Identify ERD from IDLE
Regulate rhythm
Reduce variance

- Increase mean difference
- Natural; no training needed

Our solution, differentiate ERD from ERS

ERD/ERS was tested successful for binary control. (Bai, O., et al., 2008)

New Challenge

Does it support four directional cursor control in 2-D plane?

Physiological rationale

Contralateral control

Right hand:

During movement-LERD

• After movement-LERS

Left hand:

During movement-RERD

• After movement-RERS

Rationale for 2D cursor control

Right **ERS**

LNo
PHY/MI

Base line
RNo
RNo

Right **ERD**

Left **ERD**

Left **ERS**

Online calibration

Online calibration

Left **ERD**

Left ERS

Right **ERD**

Right **ERS**

Online calibration

Left **ERD**

Left ERS

Right **ERD**

Right ERS

Color cue change

Computational Methods for Online Control

Spatial filtering

Surface Laplacian Derivation (SLD)

Temporal filtering

Power Spectral Density (PSD) estimation

Feature extraction

- Empirical selection: Channel & frequency band restriction
- Bhattacharyya distance

Classification

Decision Tree Classifier (DTC)

Online 2-D Cursor Control Game

Performance of Natural BCI for 2-D Control

- Physical movement, average performances for S1, S2, S3, S5: 92%, 85%, 81%, 84% (overall: 85.5%±4.65%)
- motor imagery, 73%±5.97% for S1, 59.2%±3.63% for S2

(offline results: 10 fold cross-validation)

Summary

- Users can achieve robust BCI control without long-term training by using natural behavior
- Higher dimensional BCI control is possible to be realized with appropriate signal processing methods
- BCI will provide great opportunities for various patients with neurological disease to improve their quality of life

Thank You!

